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Abstract—Occluded person re-identification is one of the most 

challenging tasks in security surveillance. Most existing methods 

focus on extracting human body features from occluded 

pedestrian images. This paper prioritizes a difference between 

occluded and non-occluded person re-ID: When computing the 

similarity between a holistic pedestrian image and an occluded 

pedestrian image, a certain part of the human body in this holistic 

image can be distractive for pedestrian retrieval. To solve this 

problem, we propose an occluded person re-ID framework named 

attribute-based shift attention network (ASAN). First, unlike 

other methods that use off-the-shelf tools to locate pedestrian body 

parts in the occluded images, we design an attribute-guided 

occlusion-sensitive pedestrian segmentation (AOPS) module. 

AOPS is a weakly supervised method that leverages the semantic-

level attribute annotations in person re-ID datasets. Second, 

guided by the pedestrian masks provided by AOPS, a shift feature 

adaption (SFA) module extracts the visible part of the human body 

feature in a part-based manner. After that, a visible region 

matching (VRM) algorithm is proposed to filter out the interfer-

ence information in the holistic person images during the retrieval 

phase and further purify the representation of pedestrian features. 

Extensive experiments with ablation analysis demonstrate our 

method’s effectiveness. And the state-of-the-art results are 

achieved on four occluded datasets Partial-REID, Partial-iLIDS, 

Occluded-DukeMTMC, and Occluded REID. Moreover, the 

experiments on two holistic person re-ID datasets Market-1501 

and DukeMTMC-reID, and a vehicle re-ID dataset VeRi-776 show 

that ASAN also has a good generality. 

 
Index Terms— Person Re-ID, Weakly Supervision, Feature 

Extraction, Attention Mechanism. 

I. INTRODUCTION 

ERSON re-identification (re-ID) aims to search a probe (or 

query) pedestrian from dis-joint camera views. It is an 

important research topic in computer vision with many 

applications, such as unmanned driving, security monitoring, 

and behavior analysis. The mainstream models have achieved 

satisfactory performance on the public datasets [1]-[2], which 

generally either utilize global pedestrian features [3] or 

elaborately merged it with local features [44]-[47],[60].  

However, these methods are designed with the assumption that 

the complete human body is visible. But in real scenes, the 

pedestrians are always inevitably obscured by trees, cars, walls, 

or other people. Therefore, when tested on occluded bench-

marks, the traditional person re-ID methods often mistake the 

occlusion as a part of the human body and cannot perform well. 

The main challenge in the occluded person re-ID task is that 

features extracted by traditional models may involve not only 

the target person but also the occluded regions, which can easily 

corrupt the representation. Moreover, part-based local descript-

ions [44]-[47][55] have been proven to be robust and effective 

for holistic person re-ID, but strict body parts alignment is 

required in these methods so that they can hardly work well in 

the case of occlusion. Recently, several works [5],[7]-

[13],[20],[33], [43] are proposed to solve the occlusion problem 

in person re-ID. In the setting of these works, occluded images 

are formed as the query to search the full-body images with the 

same identities in the gallery. And the strategy shared by these 

methods is to train a model that can extract the features of non-

occluded parts from occluded pedestrian images. 

However, on the one hand, the best performing occluded 

person re-ID methods [5],[20], [33], [43] use off-the-shelf tools 

like instance segmentation, key-points, or pose estimation 

models to locate the visible human body parts in occluded 

person images, which need extra annotation beyond person re-
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Fig. 1. When comparing a holistic pedestrian image with an occluded pedestrian 

image, a certain region of the human body in this holistic image can be 

distractive. And when compared with occluded images with different occlusion 

positions, the position of this region is also different. 
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ID datasets and labor-intensive pixel-level annotations. 

On the other hand, apart from extracting non-occluded 

human body features, there is another issue that should be 

specifically noticed in occluded person re-ID. As is shown in 

Fig. 1, when a full-body person image ( ) and an occluded 

person image (one from ) are paired to compute the 

similarity, a certain region of this holistic image should 

emphatically be perceived by the feature extractor. But when 

compared with occluded images with different occlusion 

positions, this region should be different. For instance, when 

 is matched with  (the right half of the person is blocked), 

the left half region of the human body in  should be used to 

calculate the similarity with the left part of the pedestrian in . 

While the upper half of  should be used when the comparison 

object is  (the lower half is occluded), because the lower body 

in  is not visible. This means that, although the goal of person 

re-ID on holistic datasets is to fully excavate the information in 

a pedestrian image, for occluded person re-ID, some part of a 

human body may bring redundant information and compromise 

the retrieval accuracy.  

In order to tackle the problem mentioned above, this paper 

proposes an attribute-based shift attention network (ASAN) for 

occluded person re-ID. 

First, we propose a weakly supervised pedestrian segmen-

tation module for our occluded re-ID task, named attribute-

guided occlusion-sensitive pedestrian segmentation (AOPS). 

With a novel interference occlusion erasing strategy in training, 

AOPS leverages attribute information and learns an occlusion-

sensitive segmentation facility under weak supervision. Then, 

the attribute-based body part masks provided by AOPS are used 

to guide the shift feature adaption (SFA) module to generate the 

discriminative pedestrian features. In the testing end, a visible 

region matching (VRM) algorithm is performed to eliminate the 

interference of disturbing parts in holistic person images. 

The major contribution of this work can be summarized as 

follows. 

(1) To resist the obstruction in the occluded pedestrian 

images, instead of utilizing off-the-shelf tools to locate the body 

part, we manage to train a weakly supervised AOPS with the 

semantic-level attribute annotations of person re-ID datasets. 

(2) To tackle the problem of interference caused by useless 

parts of the full-body picture, we first propose the SFA, which 

effectively extracts the visible body feature in a part-based 

manner, and then present the VRM to further purify the feature 

representation. 

(3) Experiments on four authoritative occluded person re-ID 

benchmarks demonstrate the superiority of our method. And the 

experimental results on two holistic person re-ID datasets and a 

vehicle re-ID dataset also confirm that our method has good 

generalization ability. 

The remainder of this paper is organized as follows: in 

section II, we review the related works. Then, following the 

pipeline described in Fig. 2, we first show the technical details 

of AOPS and SFA in section III and section IV. Then in section 

V, the loss function and the VRM are introduced. Experiments 

and analyses are shown in section VI. Finally, we conclude our 

work and discuss the future plan in Section VII. 

II. RELATED WORK  

In this section, we briefly introduce existing works of three 

aspects: class activation map (CAM), pedestrian attribute 

leaning, and person re-ID, as they present to be preliminary 

knowledge of our work.  

A. Class Activation Map and Pedestrian Attribute learning 

This paper uses CAMs of pedestrian attributes to complete the 

task of localizing the pedestrian’s body in the occluded pictures. 

So the related work of CAM and pedestrian attribute learning 

are discussed in this part. 

Zhou et al. [4] proposed class activation map (CAM) for 

CNNs that uses average pooling layer and FC layer to modify 

the high layers of the classification network. When a 

classification network is trained, by locating the parameters of 

the fully connected layer corresponding to the category with a 

high predicted probability value and weighting them with the 

feature map, the image region with high response to this 

category can be highlighted [4]. Further, these regions can be 

used to complete rough semantic segmentation [14]-[15]. 

Unlike the training process of the supervised segmentation 

model, in the training of CAM and its derivatives [4], [14]-[15], 

the object location label (pixel-level annotation) is not given, 

but only the category label (image-level annotation). Thus, the 

supervision information is weaker, and the training of these 

methods is called weakly supervised learning. 

Attributes are usually viewed as a mid-level semantic 

description for feature representation learning and have been 

investigated in numerous works. In [34], the authors applied 

several metric learning methods for the attribute’s study. Su et 

al. [36] considered multiple cameras as related tasks and 

learned a discriminative network by multi-task learning. 

Khamis et al. jointly optimized the triplet loss for re-ID and 

attribute identity loss in [37]. In [38], fine-tuned CNN was 

embedded for attribute classification. Research [56] proposes a 

 
 
Fig.2 General pipeline of proposed framework. First, the occluded/holistic (in training, there are only holistic training samples, and in testing, there are both 

occluded queries and holistic galleries) images are fed into the AOPS module, the body part masks are obtained. Then, the images and masks are both input to the 

SFA, which learns a discriminative feature representation with a proposed occlusion batch painting strategy. Finally, the features are used to perform the VRM. 
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self-supervised learning algorithm that is based on attribute-

identity embedding. In addition, there are works [17][39]-[41] 

with regard to the specific datasets for attribute learning tasks. 

Thereinto, Lin et al. [17] manually annotated the Market-1501 

[22] and DukeMTMC-reID [23] datasets with attribute labels. 

For every ID, there are adequate number of training samples for 

attribute learning, which the other attribute datasets don’t have. 

Although some research [6][17] try to leverage attribute 

learning to improve the person search, pedestrian attribute 

recognition, which aims to predict the presence of a set of 

attributes (age groups, clothes types and whether holding bags, 

etc.) from an image, still remains a relatively independent task 

from person re-ID and hardly offer a substantial help for 

accurate person re-ID. 

B. Occluded Person Re-ID  

Traditional person re-ID performs pedestrian retrieval in the 

full-body person domain. It aims to address the challenge of the 

large intra-class and small inter-class variation caused by 

various views, illuminations, poses across disjoint cameras. The 

mainstream can be grouped into hand-crafted descriptors [35], 

[42], metric learning methods [3],[16],[18]-[19],[61] and deep 

learning methods [27]-[29],[44],[60],[62]. In recent years, some 

research has focused on more practical issues, such as cross-

domain [63]-[64], long-term person re-ID [65], and occluded 

re-ID [7]-[13],[20],[33],[50]. Occluded person re-ID is a 

challenging practical issue, as occlusion generally occurs in 

real-world scenarios, but traditional methods usually suffer a 

dramatic performance drop when dealing with occlusions. 

Current works dedicated to occluded person re-ID attempt to 

seek a matching pattern between local features and global 

features. Zheng et al. [7] proposed a local patch-level matching 

model named Ambiguity-sensitive Matching Classifier (AMC) 

and introduced a global part-based matching model. He et al. 

[8] proposed an alignment-free approach named deep spatial 

feature reconstruction (DSR) to sparsely reconstruct the query 

images from gallery images. This approach is later improved in 

[9] and [20] to match different sized feature maps for the 

occluded re-ID. Zhang et al. [43] also introduce a mask-guided 

de-occlusion (MGD) framework to locate the occlusion and 

repair the occluded pedestrian, and thus transfer the partial-to-

full person matching problem into a full-to-full matching 

problem. Sun et al. [11] introduced a visibility-aware part 

model (VPM), which learns to perceive the visibility of regions 

through self-supervision. Zhou et al. [13] propose an attention 

framework to concentrate on the non-occluded region of 

pedestrians. Luo et al. [10] use an affine transform model to 

transform the holistic image to align with the partial ones. Miao 

et al. [12] propose a pose-guided feature alignment module to 

match the local patches of query and gallery images based on 

the human semantic key-points, a benchmark Occlude-

DukeMTMC is also proposed, and the method is further 

improved in [50]. Wang et al. [33] also propose a model based 

on key-points detection and this module can learn high-order 

relation information for features and topology information for 

alignment. He et al. [5] simultaneously use pose estimation and 

segmentation to construct the saliency mask for the pedestrian. 

Besides, [57] uses the Generative Adversarial Networks (GAN) 

to solve occluded face recognition. 

At present, the best performing methods (such as [5],[20], 

[43], [33]) all use off-the-shelf tools such as instance segmen-

tation and key-points tools. The training processes of these tools 

need accurate spatial locations or pixel-level annotations, which 

could be labor-intensive. In this paper, to resist the obstruction 

in the occluded pedestrian images, instead of using off-the-shelf 

tools, we seek to make full use of the semantic-level attribute 

annotations inside person re-ID datasets in a weakly supervised 

manner, where the annotating process is more labor-saving. 

III. OCCLUSION-SENSITIVE ATTRIBUTE-GUIDED BODY PART 

LOCALIZATION 

The general architecture of the proposed method is illustrated 

in Fig. 2. In part A, we describe the CAMs generated from 

pedestrian attributes. Based on it, the AOPS is introduced in 

part B. 

A. Attribute CAM for Pedestrian Body Part Localization 

CAM [4] is a technique to localize the discriminatory image 

regions even though the network is trained only on image-level 

labels. But to use CAM, the response categories must have 

appeared during the training process. And in all re-ID tasks, the 

ID of the training set and test set are specified as non-

overlapping. Therefore, in the person re-ID, it is difficult to use 

ID tags and CAM to locate the pedestrian parts in the picture. 

Lin et al. [17] annotated 27 attributes labels for the 

authoritative person re-ID dataset Market-1501, including 

gender (male/female), hair (short/long), up sleeve length 

(short/long), lower body clothing length (short/long), wearing 

hat (yes/no), age (young/teenager/adult/old), carrying handbag 

(yes/no), carrying backpack (yes/no), carrying bag (yes/no), 8 

colors of upper body clothing and 9 colors of lower-body 

clothing. These attributes, which cover almost all the charac-

teristics of pedestrians and will appear in both train set and test 

set, are very suitable for CAM segmentation tasks. However, 

when there is occlusion in the picture, the attribute CAM is not 

competent for the task of highlighting the human body parts.  
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Fig.3. Illustration of attribute CAM. (a) The CAMs of attributes whose 

prediction probabilities are > 0.9 in a holistic pedestrian image, the region of 

interest corresponding to each attribute basically conforms to human 

experience and is concentrated on the human body. (b) Failure cases of attribute 

CAM when the target person is occluded. When some parts of pedestrians are 

blocked, under the interference of the obstacles, the CAMs not only appear to 

be distracting to the background, but also mistake the blocking objects for part 

of the human body. 
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Fig. 3 shows the generated CAMs on pedestrian images using 

a trained attribute prediction network, the corresponding 

highlighted area for a full-body image with attribute prediction 

values greater than 0.9 is drawn. We can see that in Fig. 3 (a), 

the region of interest corresponding to each attribute basically 

conforms to human experience and is concentrated on the 

human body. However, in Fig. 3 (b), when some parts of 

pedestrians are blocked, under the interference of the obstacles, 

the CAMs not only appear to be distracting to the background, 

but also mistake the blocking objects for part of the human body. 

To solve this problem, we propose the interference occlusion 

erasing strategy to train an AOPS.  

B. Attribute-guided Occlusion-sensitive Pedestrian Segment-

ation 

1) Training 

Let { } be the pedestrian 

training set, where , , and  denote the -th image, its 

identity label, and its attributes annotations. We can divide  

into two parts:  { } and 

{ }, which denote identity labeled set and 

attribute labeled set (note that  and  share the common 

pedestrian image ). In the training of AOPS, we only use 

. And for Market-1501 dataset, there are 27 attributes 

annotated, including 26 attributes with 2 categories (such as 

gender: male/female, blue up clothing: yes/no, e.g.) and 1 

attribute with 4 categories (age: young/teenager/adult/ old). For 

the convenience of using CAM, we formulate the prediction of 

“age” as 4 binary classification tasks, which are young-yes/no, 

teenager-yes/no, adult-yes/no, and old-yes/no. Then we have 30 

binary classification tasks for attribute learning (i.e. 

, =0 or 1,  is a the serial number of 

each of the 30 attributes). 

As is shown in Fig. 4, for one pedestrian image , in each 

epoch, we randomly select a pixel in this image, and randomly 

select a patch with an area of 30% to 40% of the picture, and 

fill the area with this pixel value. This procession is supposed 

to force the convolution layers to learn the attribute recognition 

facility under occlusion, thus makes the network to be sensitive 

to obstructions and focus its attention on the human body. With 

this disturbance occlusion erased, this image is input to the 

backbone network to obtain the feature map. Then, a 1 1 

convolutional layer is followed to do the dimensionality 

reduction and we get the feature map  , with a size of 

 (which are the number of channels, height, and 

width, respectively). Each activation at the spatial location 

 of   (a 2-D tensor from , { }) is 

represented by ( ). Then, the result of performing global 

average pooling (GAP),  is: 

.                                (1) 

All  are concatenated to , then there are 30 fully connected 

layers followed by Softmax layers for 30 attributes’ learning 

after . For a certain attribute, there are two categories, assume 

that the output of its FC layer is  and the probability 

of assigning sample  to the attribute class  can be 

written as: 

.                           (2) 

For brevity, we omit the correlation between  and . So, the 

overall binary cross entropy (BCE) loss of attribute 

classification is formulated as below: 

.     (3) 

Let be the ground-truth of this attribute label, so that 

 and  for .  is a the serial number 

of each of the 30 attributes.  and  are the feature descriptor 

and attribute annotations of , respectively. 

2) Body Parts Segmentation 

After training, AOPS uses the method illustrated in Fig. 5 to 

locate the body parts in the occluded pedestrian image. The 

output of Softmax layer is obtained by Eq. (2), we denote the 

prediction probabilities of all 30 attributes as { }, in 

which , . Then,  can be 

regarded as the confidence of the prediction of attribute . With 
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Fig. 4. Training AOPS with interference occlusion erasing strategy. In each 

epoch, we randomly select a pixel in this image, and randomly select a patch 

of the picture, and fill the area with this pixel value. The erased image is then 

input to the backbone network to obtain the feature map.  
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Fig. 5. Locating body part in an occluded person image with AOPS. After 

training the AOPS with interference occlusion erasing strategy, we can locate 

the response area on the feature map by observing the predicted values of the 

attributes, and further locate the position of the human body.  
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a confidence threshold  empirically set as 0.9, we select a 

reliable attribute set  from , where  and  

> . And for a given , the prediction result of this 

attribute probability after FC layer is , where  is 

the weight corresponding to the category  for the channel , 

{ },  is a scalar pooled from . Essentially,  

indicates the importance of  for category [4]. Then, 

several reliable attribute-based heat maps  based on the 

selected attribute  are obtained, where each element is 

given by: 

.                     (4) 

We perform the visualization of activation maps of attribute 

CAMs following the method in [4], as is shown in Fig. 5, each 

map captures a part of the non-occluded human body. Then,  

is used to clip the values in maps for discarding background and 

occluded human part, which is set as 0.7 in our experiments. 

After that, merging and signing operations are performed, until 

then a pixel-to-pixel segmentation mask  is available: 

,       (5) 

,                      (6) 

where the sign operation here sets all non-positive numbers to 

zero. 

IV. SHIFT FEATURE ADAPTION 

Since there is currently no natural occluded pedestrian train 

dataset, we propose the shift feature adaption module to learn 

the occlusion-sensitive ability using the existing non-occluded 

person re-ID dataset. As is shown in Fig. 6 (b), in SFA, non-

occluded images are first processed with a proposed occlusion 

batch painting (OBP) strategy, then, a shift attention 

representation (SAR) takes the segmentation masks and 

features of artificial occluded images as input to generate the 

shifted visible features. Finally, these features and 

corresponding masks are fed into a mask-based drop block 

(MDB) to refine the representation. Next, we give the details of    

each component in SFA. 

A. Occlusion Batch Painting 

As is shown in Fig. 6 (a), to simulate the occlusion, for each 

batch of training data, we first randomly choose an area as the 

obstruction region (such as the right half of the image). We fill 

this area of all images in this batch with random color patches, 

and erase this area of all masks in this batch (i.e. fill it with 

black color). Notable, the OBP should not only be regarded as 

a data augmentation method for the reason that: In the OBP, on 

the one hand, the random color painting is supposed to 

cooperate with the subsequent global pooling (after SAR) to 

penalize SAR when it generates features that contain a large 

area of obstruction. On the other hand, batch painting and 

erasing can ensure that all pictures in one batch have the same 

occlusion area, thereby facilitating the features’ triplet metric 

learning. 

B. Shift Attention Representation 

For a robust representation that does not rely heavily on 

precise segmentation tools under the occluding scenario, we 

design the SAR. The SAR only needs to know the approximate 

position of the obstruction, then it can remove most of the 

occluder, thereby extracting the discriminative features that 

contain the visible human body. First, we horizontally divide 

the color-painted feature  into several parts  to obtain 

a part-based representation (the details of the division method 

will be discussed in part E of section VI).  is also divided in 

the same way into . Then we conduct an affine 

transformation [26] to , in this transformation, the masks 

 are processed with a series of operations to serve as the 

transformation parameters. To make the illustration more 

concise, we have omitted the following process after each  

in Fig. 6:  is first flattened into a 1-dimensional vector, 

followed by two fully connected layers, and then mapped into 

six space transform parameters, formulating a matrix : 

,                            (7) 

where ( , ) are scale factors, ( , ) are rotation factors, 

and ( , ) control the 2-D spatial position.  is the set 

of transformed features. For each pixel  in , the 

transforming process from  in  is given by: 

                             .                               (8) 

Then, each  is conducted with global average pooling 

 
 
Fig. 6. (a) The illustration of occlusion batch painting (OBP), (b) the illustration 

of shift feature adaption (SFA). In SFA, non-occluded images are first 

processed with the occlusion batch painting (OBP) strategy, then, a shift 

attention representation (SAR) takes the segmentation masks and features of 

artificial occluded images as input to generate the shifted visible features. 

Finally, these features and corresponding masks are fed into a mask-based drop 

block (MDB) to refine the representation. 
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(GAP). In Eq. (7), we set ( , ) = (0, 0), which makes the 

transformation process in Eq. (8) equals a cropping operation to 

the original feature. The horizontal division to the feature and 

the cropping transformation of SAR are designed for the 

reason that: the success of the part-based method [44]-[47],[60] 

indicates that based on the prior knowledge of human body 

structure, the horizontal splitting of features can be effective for 

the local information well learned. Moreover, in the non-

occluded datasets, we know that even if the image contains a 

changeable background, the discriminative pedestrian feature 

can still be learned from the rectangular feature map. Thus, we 

think that, in the training phase, if we input our model with the 

pedestrian feature which contains a small part of occlusions 

(with most of the occlusions are filtered out), then as the 

training proceeds, the model can treat these small amounts of 

occlusions as part of the background, thereby obtaining a 

tolerance for small occlusions, and obtain stronger robustness. 

So, we can see that after SAR in Fig. 6, the network shifts its 

attention to the main areas of the human body. Still, these areas 

( ) contain small parts of obstructions. Finally, with the 

following global average pooling to cooperate with OBP, SAR 

learns a robust representation and avoids heavy dependence on 

accurate segmentation masks. 

C. Mask-based Drop Block 

Horizontally splitting features can gift SFA more 

discriminative representations, but in the test set of occluded 

person re-ID benchmarks, there are often cases where the upper 

of the lower half of the picture is completely blocked (see (b) 

of Fig. 3). So, in training, following the real scene, the 

simulating OBP also contains the situation where the upper or 

lower half is completely covered. At this time, one of the 

divided local features could be full of occlusion, and its 

corresponding mask values will be all-zero. In this case, to 

prevent SAR from generating meaningless occlusion features to 

participate in the training, we propose an MDB.  The MDB is 

supposed to suppress the over-occluded features in the identity 

recognition and metric learning based on the mask values. For 

a pedestrian image , its corresponding mask is split into , 

the feature map  is divided into { } and then transformed 

to { }, which are pooled to { }. The procession of 

MDB is denoted as: 

.      (9) 

The feature vectors performed with MDP are concatenated 

together as the final descriptor of the pedestrian image. 

V. LOSS FUNCTION AND VRM 

A. Training Loss 

At the end of the SFA module, the descriptor  is used to 

perform the metric learning and identity classification learning. 

For metric learning [3], in one batch, we randomly select  

persons and pick  images of each person, i.e. totally  

images. Our goal is to make the distance between features of 

the same ID smaller than the distance between features of 

different IDs. Given a training image  whose ID is , its 

feature descriptor is , then, descriptors  for all  are 

regarded as positive examples { }, and for all  that 

 are negative examples { }. For each  in this 

batch, we find its hardest positive and negative example, the 

hard example mining triplet loss [3] is given by: 

 

,    (10) 

where  means the th image from  images of one person, 

 means Euclidean Distance calculation, and is the 

margin enforced between positive and negative examples.    

Simultaneously,  is also imposed with an identity 

classification loss. Assume that the output of FC in ID 

classifiers is . The predicted probability of each 

ID label  is calculated as: 

.                      (11) 

The cross-entropy loss of ID classification is formulated as: 

.        (12) 

Let be the ground-truth ID label, so that  and 

 for all . In this case, minimizing the cross 

entropy is equivalent to maximizing the possibility of being 

classified to the ground-truth category. Thus, the final loss of 

SFA is: 

                       .                     (13) 

Parameter  balances the contributions of these two losses. 

B. Visible Region Matching 

Algorithm 1 Computing distance in the retrieval process 

with visible region matching (VRM). 

Input: One query (occluded) image   and all gallery 

(holistic) images { }. 

Output: Euclidean Distances of one query image to each 

gallery image. 

1. Use AOPS to predict attributes of . 

2. Solve Eq. (4), (5), (6) to obtain segmentation mask . 

3. Utilize   as the segmentation masks of all gallery 

images , , ... 

4. Input masks  ,  ,    together with feature 

maps , ,   to SFA, and get the descriptors 

, , ,   

5. Compute the Euclidean Distance of   to each of  ,

  : , ,   

 

AOPS locates the pedestrian position in the occluded image. 

With the localization mask from AOPS, SFA trains a network 

to extract corresponding discriminative features. Based on these 

modules, we design the visible region matching (VRM) method 

to overcome the interference caused by useless parts of the full-
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body picture (mentioned in Fig. 1) during the retrieval phase. 

The main idea of VRM is to replace the segmentation mask of 

all the searched objects (taken from gallery set and usually 

unobstructed) with the mask of the current target person image 

(taken from query set and there is occlusion) in each retrieval 

process. The VRM is illustrated in Algorithm 1, and it mainly 

describes the calculation method of the Euclidean distance 

between the query and gallery in our framework. In this way, 

the VRM guides the SFA to generate effective representation 

from the area of gallery images that is the same as the position 

of the human body locates in the query image.  

VI. EXPERIMENTS 

In this section, we first introduce the datasets used and the 

model implementation details in part A and part B. Then, the 

comparisons with the-state-of-the-art occluded person re-ID 

methods are described in section C. To verify the effectiveness 

of the components in our method, the ablation studies are 

presented in part D-F in the order of AOPS, SFA, and VRM. 

The experiments on occluded vehicle re-ID are shown in part 

G. Finally, the visualization of retrieval results is discussed in 

part H. 

A. Datasets and Evaluation Protocol  

We evaluate our method on four occluded/partial person re-

ID datasets: Partial-REID [7], Partial-iLIDS [21], and 

Occluded-REID [13]. To validate the generalization ability of 

our framework, we also conduct experiments on two holistic 

datasets Market-1501 [22], DukeMTMC-reID [23], and a 

vehicle re-ID dataset VeRi-776 [30][49]. Partial-REID and 

Partial-iLIDS are two commonly-used datasets for partial re-ID, 

but the former also has the occluded version for occluded re-ID. 

Partial-REID contains 600 images and 60 identities, each one 

of which has 5 occluded images and 5 holistic images. Partial-

iLIDS has 238 images from 119 identities. Occluded-REID is 

an occluded person dataset that consists of 2000 images of 200 

occluded persons. Each identity has 5 occluded images and 5 

holistic images. Market-1501 and DukeMTMC-reID both 

contain few occluded person images and are widely treated as a 

holistic re-ID dataset. Market-1501 consists of 32,688 images 

of 1501 subjects observed from 6 camera viewpoints. Its 

training set, gallery set, and query set respectively contains 

12,936, 19,732, and 3,368 images. DukeMTMC-reID dataset 

contains 1,404 identities, 16,522 training images, 2,228 queries, 

and 17,661 gallery images. Occluded-DukeMTMC is selected 

from DukeMTMC-reID by leaving occluded images and filter 

out some overlap images. It contains 15,618 training images, 

17,661 gallery images, and 2,210 occluded query images. 

VeRi-776 contains 49,357 images of 776 vehicles from 20 

cameras. This dataset is collected in a natural traffic 

environment. The vehicles are labeled with bounding boxes 

over the whole vehicle body, type, color, and cross camera 

vehicle correlation. 

It should be noted that as mentioned in section I, we are 

focusing on re-identification of occluded person re-ID. 

However, in the partial person re-ID dataset Partial-iLIDS, all 

pedestrian obstructions are suitcases, and all the examples in the 

query set are pictures of only a part of the pedestrian's body 

obtained by manually cutting the suitcases. In order to simulate 

the occluded situation, for the query set of this Partial-iLIDS, 

we add a color block similar as shown in Fig. 7 below each 

image, the color block area accounts for 1/3 of the whole picture, 

and we name the modified dataset as Partial_iLIDS_O. 

We use cumulative matching characteristic (CMC, also 

known as top-K accuracy) curves and mean average precision 

(mAP) to evaluate different models in our experiments. We 

follow the evaluation protocol in [8], the occluded images and 

holistic images in occluded person re-ID datasets are 

respectively regarded as query and gallery. For vehicle re-ID, 

since there is no special occluded dataset, we follow the setting 

of Partial-REID, manually select 60 vehicles from the VeRi-

776 test set, each vehicle has 5 query images and 5 gallery 

images, and then block the query set with random colors to 

simulate the occlusion. All experiments are performed in the 

single query setting. 

B. Implementation Details  

We use ResNet50 [24] as our backbone, then we remove the 

last global average pooling layer and fully connected layer. The 

initialized model is pre-trained by ImageNet [25]. Input images 

are resized to 384 128 and augmented by flipping the picture 

horizontally with a probability of 50%. In one epoch, each 

picture is augmented once. We set the batch size to 64 (i.e.  

= 64, including 16 identities, 4 images per identity). In AOPS, 

the feature map after the backbone is performed 1 1 

convolution to reduce the dimensionality from 2048 to 512. 

Stochastic gradient descent is applied with a momentum of 0.9. 

The learning rate is gradually increased from 1e-5 to 1e-3 in 

total of 80 training epochs. The AOPSs used on occluded 

datasets are all trained on Market-1501. In SFA, following [33], 

we train the module on Market-1501 and use color jitter 

augmentation to avoid domain variance when test on occluded 

datasets. We use Adam optimizer [31] with the base learning 

rate initialized to 1.2e-3 with a linear warm-up [32] in the first 

20 epochs, then decayed to its 0.1 in 40 and 70 epochs, a total 

of 180 training epochs are required. In the validation on the 

vehicle dataset, the Adam optimizer is set with the base learning 

rate initialized to 1e-3 with a linear warm-up in the first 20 

epochs, then decayed to its 0.6 every 15 epochs between 20 and 

100 epochs. The GPU we utilize is NVIDIA RTX 2080Ti, we 

use Pytorch 1.0 to establish our whole framework. Based on the 

ablation studies in part D-E, the super parameters of our method 

in part C are set =0.3 (in Eq. (10)), =2 (in Eq. (13)). And 

the feature map division method in SFA is set Mode O_2+N_2 

introduced in part E, 1). Additionally, to implement the 

variable-controlled approach, in each ablation study section 

corresponding to certain super-parameters, other super-

parameters set the values which lead to the best performance. 

C. Comparison with the state-of-the-art 

In this part, 11 existing occluded person re-ID methods that 

have been introduced in section II are used for comparison, 

including AMC+SWM (ICCV15’) [7], DSR [8] (CVPR18’), 

SFR [9], STNReID [10], VPM (CVPR19’) [11], PGFA 

(ICCV19’) [12], PGFA+ [50] (TNNLS21’, the journal version 

of PGFA), AFPB (ICME18’) [13], FPR (ICCV19’) [20], MGD 

(IScIDE19’) [43], HONet (CVPR20’) [33], GASM [5] 
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(ECCV20’). The person re-ID accuracy comparison with the 

state-of-the-art methods on Partial-REID, Partial-iLIDS, 

Occluded REID, and Occluded-DukeMTMC are shown in 

Table I-IV. As we can see, the three best performing 

competitors are FPR [20], PGFA+ [50], and HONet [33]. As is 

mentioned in section II, to locate the human body part in the 

picture, they borrow the read-made human segmentation tool or 

key-point detection tool. But the segmentation method AOPS 

in our method is a weakly supervised trained model, which 

makes it more valuable for us to reach the same performance 

level as these methods. 

As shown in Table I and Table III, on Partial-REID and 

Occluded REID, our AOPS+SFA+VRM outperforms all the 

existing state-of-the-art in both rank-1 and mAP. On Partial-

REID, our method AOPS+SFA+VRM has advantages of 

+(1.5%/2.5%) in rank-1/rank-3 over the strongest competitor 

HONet. And on Occluded REID, this advantage of AOPS+SFA 

+VRM over HONet is +(2.2%/1.6%). On Partial-iLIDS, since 

there are no occluded pedestrian pictures, VRM is not suitable 

for this dataset. But in Table II we can see that when only using 

AOPS+SFA on Partial-iLIDS, our method still outperforms all 

methods except for HONet. On the modified Partial-iLIDS_O, 

AOPS+SFA gains improvement of +(7.6%/8.3%) in rank-1/ 

mAP over on Partial-iLIDS. This is because our method is 

designed specifically for the occluded person re-ID. Consi-

dering that it is labor-intensive to manually crop the occlusions 

in the actual application of re-ID, we value the results on the 

occluded dataset Partial-iLIDS_O rather than the partial dataset 

Partial-iLIDS. Then, with VRM, our rank-1 on Partial-iLIDS 

_O has been significantly improved to 81.7%, which is 9.1% 

higher than the best accuracy (HONet) on Partial-iLIDS. 

In order to show the effectiveness of our method more 

intuitively, we also construct a baseline for comparison, we 

remove the proposed parts from our framework, leaving only 

Resnet50 as the feature extraction network, and then use ID loss 

and hard example mining triplet as the training loss. We can see 

that the improvement of our method is obvious on the three 

datasets, for AOPS+SFA+VRM over baseline, the 

improvements are +(11.9%/22.3%), +(14.5%/23.4%), and 

+(24.2%/22.4%) on Partial-REID, Partial-iLIDS_O, and 

Occluded REID in  rank-1/mAP, respectively. 

Occluded-DukeMTMC is proposed by PGFA+ [50], 

different from the other three occluded datasets, the gallery of 

this dataset contains 10% occluded images, and [50] also 

designed an effective algorithm for this situation and achieved 

encouraging performance. As shown in Table IV, our AOPS+ 

SFA has achieved good performance by filtering out occlusions 

and learning robust part-based feature representation. Based on 

AOPS+SFA, VRM can still gain a performance improvement 

of +1.4%/1.2% in rank-1/mAP by solving the interference 

problem illustrated in Fig. 1. However, because a small number 

of pictures in the gallery are occluded, and the occlusion parts 

are not always the same as the query, the improvement of VRM 

on Occluded-DukeMTMC is not as obvious as that of the other 

three datasets. But in the end, our performance has also reached 

TABLE I 
THE COMPARISON OF OUR METHOD WITH THE STATE-OF-THE-ART METHODS 

ON PARTIAL-REID DATASET, RANK-1 ACCURACY (%), RANK-3 ACCURACY 

(%), RANK-5 ACCURACY (%), AND MAP (%) ARE SHOWN. 

Methods 
Partial-REID 

R1 R3 R5 mAP 

AMC+SWM [7] 37.3 46.0 - - 

DSR [8] 50.7 70.3 - - 

SFR [9] 56.9 78.5 - - 

STNReID [10] 66.7 80.3 86.0 - 

VPM [11] 67.7 81.9 - - 

PGFA [12] 68.0 80.0 82.0 56.2 

PGFA+ [50] 72.5 83.0 - - 

AFPB [13] 78.5 - 94.9 - 

FPR [20] 81.0 - - 76.6 

MGD [43] 84.3 - 94.0 - 

HONet [33] 85.3 91.0 - - 

Baseline 64.9 75.3 81.7 56.5 

AOPS +SFA 83.2 89.6 93.2 76.0 

AOPS +SFA+VRM 86.8 93.5 95.5 78.8 

 
TABLE II 

THE COMPARISON OF OUR METHOD WITH THE STATE-OF-THE-ART METHODS 

ON PARTIAL-ILIDS AND PARTIAL-ILIDS_O DATASETS, RANK-1 ACCURACY 

(%), RANK-3 ACCURACY (%), RANK-5 ACCURACY (%), AND MAP (%) ARE 

SHOWN. 

Methods 
Partial-iLIDS 

R1 R3 R5 mAP 

AWC+SWM [7] 21.0 32.8 - - 

DSR [8] 58.8 67.2 - - 

SFR [9] 63.9 74.8 - - 

STNReID [10] 54.6 71.3 79.2  

VPM [11] 67.2 76.5 - - 

PGFA [12] 69.1 80.9 - - 

FPR [20] 68.1 - - 61.8 

PGFA+ [50] 70.6 81.3 - - 

HONet [33] 72.6 86.4 - - 

Baseline 56.3 65.5 69.1 49.0 

AOPS +SFA 71.4 81.9 83.0 72.5 

Method Partial-iLIDS_O 

Baseline 67.2 71.9 76.2 62.5 

AOPS +SFA 79.0 85.3 87.7 80.8 

AOPS +SFA+VRM 81.7 88.3 90.9 85.9 

 

TABLE III 

THE COMPARISON OF OUR METHOD WITH THE STATE-OF-THE-ART METHODS 

ON OCCLUDED REID, RANK-1 ACCURACY (%), RANK-3 ACCURACY (%), 

RANK-5 ACCURACY (%), AND MAP (%) ARE SHOWN. 

Methods 
Occluded REID 

R1 R3 R5 mAP 

AWC+SWM [7] 31.1 - - 27.3 

PCB [44] 41.3 - - 38.9 

DSR [8] 72.8 - - 62.8 

GASM [5] 74.5 - - 65.6 

FPR [20] 78.3 - - 68.0 

HONet [33] 80.3 - - 70.2 

Baseline 58.3 69.6 75.5 49.4 

AOPS+SFA 80.3 86.1 88.3 70.1 

AOPS +SFA+VRM 82.5 89.7 92.2 71.8 

 TABLE IV 

THE COMPARISON OF OUR METHOD WITH THE STATE-OF-THE-ART METHODS 

ON OCCLUDED-DUKEMTMC, RANK-1 ACCURACY (%), RANK-5 ACCURACY 

(%), RANK-10 ACCURACY (%), AND MAP (%) ARE SHOWN. 

Methods 
Occluded-DukeMTMC 

R1 R5 R10 mAP 

PCB [44] 42.6 57.1 62.9 33.7 

DSR [8] 40.8 58.2 65.2 30.4 

SFR [9] 42.3 60.3 67.3 32.0 

PGFA [12] 51.4 68.6 74.9 37.3 

HONet [33] 55.1 - - 43.8 

PGFA+ [50] 56.3 72.4 78.0 43.5 

Baseline 39.9 55.8 60.0 31.7 

AOPS+SFA 54.0 70.3 77.2 42.6 

AOPS +SFA+VRM 55.4 72.4 78.9 43.8 
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the state-of-the-art, which indicates a good universality of our 

method on this challenging benchmark. 

Since the occluded re-ID methods are tailor-made for the 

scenario where pedestrians are occluded, the latest occluded 

pedestrian re-ID methods, in addition to testing on the occluded 

dataset, usually also observe the universality on the holistic 

pedestrian datasets. We follow them and test our method on the 

two most popular holistic datasets Market-1501 and Duke-

MTMC-reID. As shown in Table V, FPR [20] achieves much 

higher performance than other methods, this may be because 

the picture descriptor of FPR is designed as four complex 

feature maps instead of the concatenated feature vectors used 

by most methods (each feature map can be equivalent to 

multiple feature vectors). Therefore, while consuming more 

storage and computing resources, FPR contains richer 

information and performs well on large holistic datasets. And 

our mAP ranks second among all occluded re-ID methods, 

which indicates a good generality of our method on holistic 

datasets. We can also see that, since there is few obstruction on 

the image of holistic dataset, the gains of VRM are very weak. 

And the gains of AOPS+SFA over baseline are +(1.2%/1.1%) 

and +(1.2%/1.2%) in rank-1/mAP on two holistic datasets, this 

improvement indicates that even if the occlusion is scarce in the 

dataset, the part-based representation of AOPS+SFA can still 

be helpful for enhancing the local features' learning on the basic 

backbone. 

D. Ablation Study on AOPS 

1) Comparison with Standard Attribute Network   

In our framework, AOPS is responsible for locating the 

pedestrian body part, and its role is like a human parsing or 

segmentation tool. But it is inappropriate to use intersection 

over union (IoU) to evaluate AOPS like a segmentation method. 

Because AOPS is weakly supervised trained, it cannot provide 

an extremely accurate segmentation mask. Besides, in our 

system, we don't need it to provide a mask that can accurately 

cut the pedestrian's body part: In SFA, we fixed the rotation 

factors of the spatial transformation, the extracted local features 

are a rectangular region derived from the overall features. The 

human body is non-rigid, so that local features must contain a 

small amount of occlusion and background information. In 

the training stage, we let the model recognize pedestrian images 

that contain some background information, which enables the 

network to construct more robust discrimination. Then, for the 

AOPS, it only needs to provide the SFA with guidance 

information on where in the image the pedestrian's body parts 

roughly locate. 

Therefore, we designed the following experiment to verify the 

effectiveness of AOPS: we first train a standard attribute 

recognition network (named AttrNet) on Market-1501 with the 

attribute annotations, and then train the AOPS with interference 

occlusion erasing strategy shown in Fig. 4. Next, we fill the left 

half or right half random color blocks (such as yellow, green, 

blue, etc.) of the pictures in the test set. The reason why we 

choose left and right instead of up and down is that the left and 

right half of the fill has less effect on the original pedestrian's 

attributes. For example, if the lower body of a pedestrian is 

blocked, the color of the lower body is not visible, and this 

lower body color attribute annotated will disappear. But if we 

block the left half, this will not happen. We call the test set filled 

with color patches as Halfpatint-Testset, and then we use 

AttrNet and AOPS to test the attribute prediction accuracy on 

the original test set (Ori-Testset) and Halfpatint-Testset, 

respectively. Fig. 7 shows some CAM heat maps examples of 

these two methods. 

It can be seen that when AttrNet handles the situation where 

the color block occludes the pedestrian's body, the attribute 

prediction will be disturbed, and some attention will be 

dispersed to the color block. The color of the painted block will 

not only cause AttrNet to predict the wrong color attribute (as 

shown in Fig. 7 (a) and (b)), it will also interfere with the 

network's judgment of other non-color attributes (Figure 7 (c)). 

However, AOPS will focus on the human body part to avoid 

interference of color blocks. And compared with AttrNet, 

AOPS can focus on the part of the picture that is more in line 

with the human prior knowledge of each attribute.   

We then follow the attribute accuracy evaluation method of 

[17], using mean accuracy to observe the attribute prediction 

TABLE V 
THE COMPARISON OF OUR METHOD WITH THE OCCLUDED PERSON RE-ID 

STATE-OF-THE-ART METHODS ON MARKET-1501 AND DUKEMTMC-REID, 

RANK-1 ACCURACY (%) AND MAP (%) ARE SHOWN. 

Methods 
Market-1501 

DukeMTMC-

reID 

R1 mAP R1 mAP 

DSR [8] 91.3 75.6 82.5 68.7 

SFR [9] 93.1 81.0 84.9 71.3 

VPM [11] 93.0 80.8 83.6 72.6 

PGFA [12] 91.2 76.8 82.6 65.5 

FPR [20] 95.4 86.6 88.6 78.4 

HONet [33] 94.2 84.9 86.9 75.6 

GASM [5] 95.3 84.7 88.3 74.4 

Baseline 93.4 84.1 86.2 74.1 

AOPS+SFA 94.6 85.2 87.4 76.3 

AOPS+SFA+VRM 94.6 85.3 87.5 76.3 

 

 
Fig.7. CAM cases when AttrNet and AOPS are tested on Halfpatint-Testset (transformed from Market-1501). For one image, only the CAMs of attributes who 

have prediction probabilities greater than 0.9 are shown. It can be seen that when AttrNet handles the situation where the color block occludes the pedestrian's 

body, the attribute prediction will be disturbed, and some attention will be even dispersed to the color block. And compared with AttrNet, AOPS can focus on the 

part of the picture that is more in line with the human prior knowledge of each attribute. 
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performance of the two methods (the threshold for judging 

whether the prediction probability is correct is set to 0.5 in this 

evaluation). Table VI shows the mean attribute prediction 

accuracies of 30 attributes of the two methods on different test 

sets. We can see that when tested on the original test set (Ori-

Testset), AOPS has a 0.5% performance advantage over 

AttrNet. This is because even tested on images without 

occlusion, AOPS can focus more on the correct position than 

AttrNet does (see the CAMs of “upshort” attribute of AttrNet 

and AOPS in Fig. 7 (a)). When the two methods were tested on 

the dataset filled with colored blocks (Halfpatint-Testset), the 

accuracy of AttrNet decreases from 91.6% to 82.6% (a 9% 

drop), while the performance of AOPS only decrease by 1.2%. 

2) Comparison with Human Parsing Network   

We also conduct another interesting set of experiments. We 

use an existing human parsing model CE2P [48] instead of 

AOPS, and AttrNet instead of AOPS, combined with SFA to 

complete the task of occluded person re-ID. The re-ID 

experimental results on the three occluded person re-ID datasets 

are shown in Table VII. It can be seen that AttrNet+SFA has 

the worst performance, which is easy to foresee. But the 

experimental results of AOPS+SFA+VRM and CE2P+SFA+ 

VRM are quite close. It should be known that, CE2P is a 

strongly supervised segmentation model trained with pixel-

level annotations. It segments pedestrian body parts from the 

background much more accurately than AOPS. But when 

imposed to our framework together with SFA, it helps achieve 

similar re-ID performance as AOPS does. This is because, in 

SFA, feature extraction does not need accurate segmentation 

maps (as mentioned in paragraph 1 in section D). The model 

has seen many pedestrian pictures with a small amount of 

background or even obstructions during the training phase. In 

the test phase, even if the local feature extracted contains a 

small amount of interference information, the network can still 

identity the pedestrian ID correctly. 

3) Parameter Analysis   

In the part B, 2) of section III, we select the reliable attributes 

set  from  with a confidence threshold , where the 

prediction value of these attributes > . Parameter  

determines the strictness of the selection of attributes when we 

use attributes to locate the human body. Since the attribute 

prediction is a binary classification task, . Table 

VIII shows the performance changes of our method on the three 

datasets as  changes. It can be seen that when the is changed 

from 0.5 to 0.7, the performance is gradually improved. The 

results of 0.8 and 0.9 for are similar. This may be because some 

backgrounds or occlusions similar to the human body will be 

recognized as attributes by the AOPS with lower confidence. 

When the value of   is set small, it will affect the accuracy of 

human parsing. When the  value is greater than a certain value, 

the response area is more reliable for attributes predicted with 

high confidence. The small fluctuation of  will not bring 

about big performance fluctuations. 

The method of selecting attributes based on thresholds in 

AOPS is somewhat like self-paced learning in unsupervised 

methods [51][52][54]. As the training progresses, the 

recognition ability of the network will gradually improve. But 

the filtering is performed after the training is completed, and the 

samples in our dataset are fully-labelled. For the training 

process of AOPS, Fig. 8 shows the changes in loss and accuracy 

as the epoch changes. The attribute prediction accuracy is tested 

on Halfpatint-Testset introduced in Table VI. We can see that 

as training progresses, the training loss continues to decrease, 

and performance gradually rises with small fluctuations. Finally, 

it stabilizes at 90.9% at the 80th epoch. Under our experimental 

conditions, complete training only needs about 4 hours to cycle 

the Market-1501 dataset for 80 epochs. 

TABLE VI 
THE ATTRIBUTE PREDICTION ACCURACIES OF ATTRNET AND PROPOSED 

AOPS ON ORIGINAL TESTSET AND COLOR HALF-PAINTED TESTSET (BOTH 

FROM MARKET-1501), MEAN ACCURACY ARE SHOWN. 

Methods 
Attribute Mean Accuracy 

Ori-Testset Halfpatint-Testset 

AttrNet 91.6% 82.6% 

AOPS 92.1% 90.9% 

 

TABLE VII 
THE COMPARISON OF REPLACING AOPS WITH ATTRNET AND CE2P IN OUR 

OCCLUDED PERSON RE-ID FRAMEWORK, RESULTS ON PARTIAL-REID, 

OCCLUDED-DUKEMTMC AND OCCLUDED REID ARE REPORTED, RANK-1 

ACCURACY (%) AND MAP (%) ARE SHOWN. 

Methods 
Partial-REID 

Occluded-

DukeMTMC 

Occluded 

REID 

R1 mAP R1 mAP R1 mAP 

AttrNet+SFA+VRM 66.5 57.5 33.6 23.3 62.8 49.3 

AOPS+SFA+VRM 86.8 78.8 55.4 43.8 82.5 71.8 

CE2P+SFA+VRM 86.9 78.7 55.4 43.9 82.4 71.9 

 

TABLE VIII 
THE NUMERICAL RESULTS UNDER DIFFERENT VALUES OF  IN AOPS, 

RESULTS ON PARTIAL-REID, OCCLUDED-DUKEMTMC AND OCCLUDED 

REID ARE REPORTED, RANK-1 ACCURACY (%) AND MAP (%) ARE SHOWN. 

Value of  
Partial-REID 

Occluded-

DukeMTMC 
Occluded REID 

R1 mAP R1 mAP R1 mAP 

0.5 83.7 72.6 50.9 38.7 77.9 67.2 

0.6 85.2 75.5 53.1 41.0 79.1 69.0 

0.7 86.0 77.6 54.2 42.1 80.9 70.6 

0.8 86.7 78.8 55.4 43.7 82.5 71.8 

0.9 86.8 78.8 55.4 43.8 82.5 71.8 

 

 

 
Fig.8. The training loss (on train set) and attribute prediction accuracy (on test 
set) curves of AOPS. As training progresses, loss continues to decrease, and 
performance stabilizes at 90.9% at the 80th epoch. 
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E. Ablation Study on SFA 

In this section, the feature adaption module is analyzed from 

aspects of feature division, SAR parameter setting, loss 

function parameter setting, and effectiveness validation. 

1) Local Feature Division  

In this part, we study the division method of features before 

SAR. To obtain a richer granularity of feature representation, 

we formulate two different types of local features: overlapping 

features and non-overlapping features. For overlapping features 

that cover a larger area in the image, cutting the feature map 

into two parts in two different ways: the upper and lower 2/3 of 

image (Mode O_1), the upper and lower 3/4 of the image (Mode 

O_2). Then for non-overlapping features which have smaller 

receptive field, we follow the division methods in PCB [44][60], 

horizontally divide the feature map into 2 stripes (Mode N_1), 

3 stripes (Mode N_2), and 6 stripes (Mode N_3) on average. 

These overlapping and non-overlapping features serve as local 

representations. Inspired by MGN [28], we also add a global 

representation Mode G. Since we do not use a separate ID loss 

for each granularity like MGN, we only add one global vector. 

The results of AOPS+SFA+VRM are reported in Table IX. 

It can be seen that when only overlapping features are used, 

the upper and lower 3/4 block method (Mode O_2) achieves the 

best performance, and among the non-overlapping block 

methods, the three-part method (Mode N_2) has the best 

performance. We combine these two types of features together, 

then the best method is Mode O_2+N_2, the dual-granularity 

local representation brings a performance gain of +(3.8%/3.7%) 

in rank-1/mAP on Partial-REID on the basis of Mode O_2. On 

Occluded-DukeMTMC and Occluded REID the gains are 

+(2.4%/2.7%) and +(3.6%/3.6%). Then, we add the global 

representation, which also brings gains of +(0.2%/0.1%), 

+(0.2%/0.1%), and +(0.2%/0.1%).  

It should be noted that the results in Table IX are only based 

on our artificial division method. In [53], the authors explored 

the use of neural architecture search (NAS) technology to find 

a better part model for person re-ID. Therefore, if the 

experimental conditions are sufficient, it is possible to search 

for a better-performing part-based structure for occluded re-ID 

with NAS.  

2) SAR Parameter Analysis  

In SFA, SAR extracts features based on the pedestrian mask 

provided by AOPS. In SAR, there are six parameters that 

control the affine transformation, and they can be divided into 

two types: the parameters ( , ), ( , )  that implement 

the translation and cropping function, and the parameters ( ,

) that implement the rotation function. Note that when only 

the rotation function is used, the feature cannot be cut, so that 

the obstruction cannot be avoided. Therefore, we ignore the 

situation using only ( , ), and conduct two sets of 

experiments. In setting a, only translation and cutting are valid, 

i.e., the parameters to be learned are ( , ) and ( , ). 

And in setting b, all six parameters are to be learned. The 

experimental results are shown in Table X. The two sets of 

experiments are denoted as AOPS+SFA+VRM with six 

parameters (w. 6 para.) and with four parameters (w. 4 para.). 

We can see that when learning only translation and cutting 

parameters, it can achieve a better performance (AOPS+SFA 

+VRM w. 4 para.). This may be because rotating pedestrians 

actually does not fit the way pedestrian recognition in our 

experience, and keeping the vertical direction of the pedestrian 

makes the local feature learning more stable. On the other hand, 

in the case of only the cutting and translation are valid, as shown 

in Fig. 6, the extracted feature is a small rectangular area from 

the original feature, which contains a few occlusion and 

background information. This helps the model improve its 

robustness against background interference. In the test phase, 

even if the mask cannot accurately divide the pedestrians from 

the occlusion, the well-learned model can still identity 

pedestrian features that contain little obstructions and 

background, thereby achieving higher re-ID accuracy. 

3) Parameter Analysis of Loss Function  

In Eq. (10), parameter  determines the margin that is 

enforced between positive and negative pairs, and in Eq. (13), 

 balances the contributions of triplet loss and ID cross entropy 

loss. We set the value of  from 0.1 to 1.0 at the stride of 0.1, 

and the value of  from 0.5 to 3.5 at the stride of 0.5. Fig. 9 

shows the rank-1 and mAP curves that vary with these two 

parameters. We can see that the performance changes are 

similar on the three datasets. For the margin in triplet loss, when 

 is 0.3, the performance is the best. A smaller  will make the 

quality of hard examples decrease, and too large will make 

training difficult. For the weight control ratio , when  is 

equal to 2, the re-ID performance reaches the best. A smaller  

cause the network to focus too much on triplet loss, thus suffers 

from a weaker generalization capability [3]. And excessive  

will make the network lose the ability to capture the changes of 

the same person. 

TABLE IX 
THE NUMERICAL RESULTS OF DIFFERENT FEATURE DIVISION MODE IN SFA, 

RESULTS ON PARTIAL-REID, OCCLUDED-DUKEMTMC AND OCCLUDED REID 

ARE REPORTED, RANK-1 ACCURACY (%) AND MAP (%) ARE SHOWN. 

Methods 
Partial-REID Occluded-Duke Occluded REID 

R1 mAP R1 mAP R1 mAP 

Mode G 71.6 62.7 43.3 34.5 62.4 52.5 

Mode O_1 81.1 71.2 51.5 39.9 77.9 66.8 

Mode O_2 82.8 75.0 52.8 41.0 78.7 68.1 

Mode N_1 81.6 71.3 51.0 39.6 77.6 63.8 

Mode N_2 82.7 74.3 52.7 41.1 78.8 66.8 

Mode N_3 82.2 72.5 51.9 40.3 78.5 66.0 

Mode O_1+N_1 82.6 76.0 52.5 40.8 79.2 68.6 

Mode O_1+N_2 85.3 77.5 54.4 42.7 81.5 70.6 

Mode O_1+N_3 83.7 76.8 53.2 41.4 80.0 69.4 

Mode O_2+N_1 84.1 76.4 53.8 42.0 79.6 68.8 

Mode O_2+N_2 86.6 78.7 55.2 43.7 82.3 71.7 

Mode O_2+N_3 85.5 77.2 54.6 43.0 80.7 70.1 

Mode O_2+N_2+G 86.8 78.8 55.4 43.8 82.5 71.8 

 

TABLE X 
THE NUMERICAL RESULTS OF DIFFERENT PARAMETER SETTING IN SFA, 

RESULTS ON PARTIAL-REID, OCCLUDED-DUKEMTMC AND OCCLUDED 

REID ARE REPORTED, RANK-1 ACCURACY (%) AND MAP (%) ARE SHOWN. 

Methods 
Partial-REID Occluded-Duke Occluded REID 

R1 mAP R1 mAP R1 mAP 

AOPS+SFA+VRM w. 

6 para. 
83.9 75.4 52.1 41.4 79.3 68.4 

AOPS+SFA +VRM w. 

4 para. 
86.8 78.8 55.4 43.8 82.5 71.8 
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4) Effectiveness of SFA  

In order to verify the effectiveness of SFA and to ensure the 

fairness of the experimental comparison, the pedestrian body 

masks provided by AOPS should also be used in the 

comparison experiment. Thus, in the comparison experiment 

(named “Maskdot”), we directly multiply the mask  with the 

feature map , so that only the features corresponding to the 

non-zero positions on the mask are retained. The comparison 

results are shown in Table XI. It can be seen that SFA brings 

the performance gain of +(7.3%/5.3%) in rank-1/mAP on the 

Partial-REID dataset. On Occluded-DukeMTMC, and 

Occluded REID, the gains are +(7.3%/7.2%) and +(8.5%/8.2%) 

in rank-1/mAP. As for the reason of this performance difference, 

AOPS cannot accurately segment human body parts, and 

occlusion information will inevitably be introduced during the 

test phase, which leads to a lower performance of the method 

“Maskdot”. But as mentioned in the previous section D, SFA, 

combined with the attention mechanism of the AOPS masks, 

enables the model to obtain the ability to recognize pedestrian 

pictures containing background information. Therefore, SFA 

can use the mask to generate discriminative features better than 

performing a dot product directly with the mask. 

F. Ablation Study on VRM 

For the effectiveness of VRM, the experimental results are 

shown in Table XII. We can see that when VRM is used, the 

performance gains are +(3.5%/2.8%) on Partial-REID, +(2.5%/ 

3.1%) on Occluded-DukeMTMC and +(2.3%/1.9%) on 

Occluded REID in rank-1/mAP. This is because in the case of 

occlusion, VRM can filter the information which is useless in 

the whole-body picture by replacing the mask of gallery image 

with that of query. It also shows that solving the problem 

illustrated in Fig. 1 is helpful for occluded person re-ID. 

Discussion of efficiency: In order to solve the mismatching 

problem illustrated in Fig. 1, we proposed VRM, each time a 

query and a gallery image are paired to compute similarity, we 

replace the mask of the gallery with this query’s mask to 

generate gallery feature tailor-made for this query. Thus, when 

testing on the dataset for academic research, our feature 

extraction times of gallery images will increase by the same 

multiple as the number of query pictures. However, in practical 

applications, the re-ID task is usually used to search for other 

pictures of one target of interest from the gallery pool. i.e., we 

get a query, and we retrieve the whole gallery to search for 

similar items to this query. In this case, the number of feature 

extraction times of our method is the same as other methods. 

Besides, because the mask of the gallery is replaced by the mask 

of the query, VRM saves a large amount of gallery mask 

extraction time. Therefore, we recommend using VRM in more 

practical scenarios where there are only a few queries.   

G. Occluded Vehicle Re-ID 

In order to further verify the generalization performance of 

our method, we conduct experiments on a task which is similar 

to the person re-ID, the vehicle re-ID. We use the VeRi-776 

dataset [30]. In VeRi-776, in addition to the vehicle ID 

annotations, for our method, the other two important labels are 

the color and vehicle-model annotations (as the attributes in 

AOPS) provided in this dataset. In the vehicle re-ID 

experiment, similar to the practice of using the Market-1501 

attribute to train AOPS in the person re-ID task, we use the 

vehicle-model and color annotations in VeRi-776 for training 

the AOPS. Since there is no research related to occluded vehicle 

re-ID, and the VeRi-776 dataset is not a dataset specifically 

used to evaluate the method of occlusion re-ID. We follow the 

setting of the person re-ID dataset Partial-REID, select pictures 

from the test set of VeRi-776, and perform manual color blocks 

like in the way shown in Fig. 7 to the query images. Thus, we 

can simulate occlusions on the vehicle dataset to test the 

effectiveness of our method.  

Fig. 10 is the pedestrian and vehicle masks obtained by the 

pedestrian AOPS and the vehicle AOPS when there is occlusion. 

The value in the mask is actually binary, here we replace the 

white area with the original image content at the corresponding 

 

 

 
Fig.9. Rank-1 and mAP curves as function of  and , when the variable is 

,  is set to 2.0, and when  varies,  is set to 0.3. It can be seen that the 
best performance is achieved when =0.3 and =2. 

TABLE XI 
THE EFFECTIVENESS VALIDATION EXPERIMENTS RESULTS OF SFA, RESULTS 

ON PARTIAL-REID, OCCLUDED-DUKEMTMC AND OCCLUDED REID ARE 

REPORTED, RANK-1 ACCURACY (%) AND MAP (%) ARE SHOWN. 

Methods 
Partial-REID Occluded-Duke Occluded REID 

R1 mAP R1 mAP R1 mAP 

AOPS+Maskdot+VRM 79.5 73.5 48.1 36.6 73.8 63.5 

AOPS+SFA+VRM 86.8 78.8 55.4 43.8 82.5 71.8 

 

TABLE XII 
THE EFFECTIVENESS VALIDATION EXPERIMENTS RESULTS OF VRM, 

RESULTS ON PARTIAL-REID, OCCLUDED-DUKEMTMC AND OCCLUDED 

REID ARE REPORTED, RANK-1 ACCURACY (%) AND MAP (%) ARE SHOWN. 

Methods 

Partial-

REID 

Occluded-

DukeMTMC 

Occluded 

REID 

R1 mAP R1 mAP R1 mAP 

AOPS+SFA 83.2 76.0 54.0 42.6 80.3 70.1 

AOPS+SFA+VRM 86.8 78.8 55.4 43.8 82.5 71.8 
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position, to more easily observe the segmentation of the mask. 

It can be seen that the AOPS trained with the vehicle color and 

vehicle model can still effectively avoid most of the color 

blocks (simulated obstructions). Besides, it should be noted that, 

the AOPS used on dataset Partial-REID in Fig. 10 is trained on 

Market-1501, and the AOPS we use on all occluded datasets are 

also the same. From Fig. 7 and Fig. 10, we can see that when 

AOPS is used across datasets, its positioning effect on the 

human body under occlusion is still stable. 

The ablation experiment results of each component in our 

method on VeRi-776 are shown in Table XIII. On the vehicle 

dataset, our method has significant improvement over the 

baseline. Specifically, compared to using AttrNet as the mask 

generator, AOPS brings a performance increase of +(16.4% 

/8.7%) in rank-1/mAP. And SFA achieves a performance gain 

of +(8.2%/4.6%) compared to direct multiplying masks. Finally, 

our method AOPS+SFA+VRM achieves a performance gain of 

+(18.3%/9.8%) over baseline. This shows that our method also 

has good generalization ability between different tasks. 

H. Visualization 

Fig. 11 shows some retrieval examples of the baseline and 

the proposed framework (AOPS+SFA+VRM) on Partial-REID 

and VeRi-776. We can see that in Fig. 11 (a), on the one hand, 

the baseline network cannot focus on the visible (unblocked) 

body parts of pedestrians, thus retrieving erroneous results 

which have similar appearance to the target person (also can be 

seen in Fig. 11 (b)-(c)). On the other hand, the baseline regards 

grass as a part of the human body, and thus retrieves the wrong 

candidate containing grass in the background. In Fig. 11 (b) and 

(c), the persons’ lower body is blocked by a table or a car. In 

the search results of the baseline, there are wrong candidates 

whose lower body texture patterns are similar to the obstacles. 

Similar situations with the pedestrian dataset also appear in the 

vehicle results in Fig. 11 (e)-(f). However, compared with the 

baseline, our method can focus on the part of the unblocked 

target of the query, and focus on the same position of the gallery 

during retrieval, so that the task of occluded re-ID can be 

completed excellently.  

VII. CONCLUSION AND FUTURE PLAN 

Conclusion: In this paper, to solve the mismatching problem 

in the retrieval process of occluded person re-ID, we propose 

an attribute-based shift attention network (ASAN). In this 

framework, an attribute-guided occlusion-sensitive pedestrian 

segmentation (AOPS) module is trained in a weakly supervised 

manner to localize the human body parts in the occluded 

pedestrian image. Then, the localization mask and the 

corresponding image are input to a proposed shift feature 

adaption (SFA) network, by which the inference from 

obstructions can be effectively eliminated. Then a visible region 

matching (VRM) is presented to eliminate the useless 

information in holistic image and purify the features. 

Consequently, discriminative feature description is obtained. 

 
Fig. 10. The human body masks and the vehicle masks obtained by pedestrian 

AOPS and vehicle AOPS. Just like filtering out natural occlusions on the 

Partial REID dataset, AOPS trained with the vehicle color and model can also 

effectively avoid simulated occlusion color blocks on the VeRi-776 dataset. 

image

mask

image

mask

From Partial-REID

From VeRi-776

TABLE XIII 
THE EFFECTIVENESS VALIDATION EXPERIMENTS RESULTS OF EACH 

MODULE ON VERI-776, RANK-1 ACCURACY (%) AND MAP (%) ARE 

SHOWN. 

Methods 
VeRi-776 

R1 R5 R10 mAP 

Baseline 51.5 74.8 87.8 43.5 

AttrNet+SFA+VRM 52.4 76.0 89.7 44.6 

AOPS+Maskdot+VRM 60.6 82.4 92.4 48.7 

AOPS+SFA+VRM 68.8 90.1 96.8 53.3 

 

 
 
Fig. 11. Retrieval results comparison of the baseline and our method. Green and 

red rectangles indicate correct and error results, respectively. Fig. (a)–(d) are 

the results on person datasets Partial-REID and Fig. (e)-(f) are results on vehicle 

datasets VeRi-776. We can see that the baseline often regards the occlusions in 

the picture as the texture of the human body, thus searching for wrong results. 

Our method can effectively filter out obstructions and retrieve the correct results 

with valuable information in the picture. 
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The experimental results on three occluded/partial pedestrian 

re-ID datasets show that our method outperforms existing state-

of-the-art approach. The experiments on two holistic person re-

ID datasets and a vehicle re-ID dataset also verify its generality. 

Future Plan: Although we proposed the ASAN and achieved 

the state-of-the-art in this work, the most of the existing 

occluded person re-ID research set the occluded pedestrian 

images as query, and set the holistic pedestrian images as 

gallery. Our work was also based on this setting. In addition, 

the problem of people occluding each other is also widely 

present in real scenes and occluded datasets. The existing 

methods cannot well solve the problems of people occlusion 

and people being occluded by obstacles at the same time. In 

future work, we may consider the case where both query and 

gallery are blocked, and design methods to solve the problem 

of pedestrians being blocked by obstacles and being blocked by 

non-target pedestrians at the same time. Besides, in view of the 

lack of train set of occluded re-ID, the cross-domain research 

on occluded re-ID is also an explorable research direction based 

on the related ideas of cross-domain person re-ID research [63]-

[64]. 
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